limited recursion - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

limited recursion - traducción al ruso

Alpha recursion; Α-recursion theory

limited recursion      

математика

ограниченная рекурсия

recursiveness         
  • Malyutin]], 1892
  • Front face of [[Giotto]]'s ''[[Stefaneschi Triptych]]'', 1320, recursively contains an image of itself (held up by the kneeling figure in the central panel).
  • [[Ouroboros]], an ancient symbol depicting a serpent or dragon eating its own tail.
  • The [[Sierpinski triangle]]—a confined recursion of triangles that form a fractal
  • Recently refreshed [[sourdough]], bubbling through [[fermentation]]: the recipe calls for some sourdough left over from the last time the same recipe was made.
PROCESS OF REPEATING ITEMS IN A SELF-SIMILAR WAY
Recursion definition; Recursive; Recursivity; Recursionism; Recursively; Infinite Recursion; Recursion, infinite; Recursor function; Recursionisms; Recursion (Concept); Recursion (concept); Recursive routine; Recursions; Recursion principle; Recursive structure; Infinite loop motif; Infinite-loop motif; Recursiveness; Mathematical recursion; Base case (recursion); Recursoin; Recursive step; Recurson; Recursive humour; Recursion in natural languages; Recursion (linguistics)

[ri'kə:sivnis]

общая лексика

рекурсивность

Смотрите также

general recursiveness; partial recursiveness; potential recursiveness; primitive recursiveness; relative recursiveness; uniform recursiveness

существительное

логика

рекурсивность

private limited company         
COMPANY IN WHICH THE LIABILITY OF MEMBERS OR SUBSCRIBERS OF THE COMPANY IS LIMITED; AFFORDS SHAREHOLDERS OF THE COMPANY WITH "LIMITED LIABILITY" IF THE COMPANY IS UNABLE TO PAY LIABILITIES
Limited companies; Limited Company; Private Limited company; Co., Ltd.; Guaranteed company; Ltd company

[,praɪvɪt,lɪmɪtɪd'kʌmptnɪ]

общая лексика

частная компания с ограниченной ответственностью (любая компания, не являющаяся публичной компанией с ограниченной ответственностью [public limited company])

американизм

частная компания с ограниченной ответственностью (компания с числом акционеров от двух до пятидесяти, ограниченным правом передачи акций, невозможностью выпуска акций и облигаций на свободный рынок, ограничением ответственности акционеров вложенным ими капиталом; после названия обычно пишется сокращение "Ltd." (Лтд.); частные компании, как правило, освобождены от обязанности по публикации их финансовых отчетов, для них упрощена процедура внешнего аудита)

синоним

private company limited by shares; limited company

Definición

Интернэшонал Никл Компани Оф Канада Лимитед
("Интернэ́шонал Никл Ко́мпани Оф Ка́нада Ли́митед", )

ИНКО (International Nickel Company of Canada, Ltd, INCO), крупнейший никелевый трест, включающий полностью или частично свыше 20 компаний по добыче и переработке руд цветных металлов. Контролируется американским, английским и канадским капиталом. Создан в 1928 путём объединения английских и американских компаний по добыче никеля в Канаде. В отдельные периоды он контролировал более 90\% добычи никеля в капиталистических странах. После 2-й мировой войны 1939-45, вследствие расширения добычи другими фирмами, его доля в производстве никеля в капиталистических странах постепенно снижалась и в конце 60-х гг. составляла примерно 60\%. Помимо никеля, ИНКО добывает и производит платину, медь, серебро, золото, кобальт, селен, теллур, родий, рутений и др. металлы. Основные производственные предприятия (рудники, обогатительные фабрики, плавильные и рафинировочные заводы) расположены в Канаде. Предприятия имеются также в Великобритании и США. ИНКО участвует в разработке месторождений никеля на Новой Каледонии. По состоянию на конец 1970 активы компании равнялись 1827,4 млн. американских долл., продажи - 1055,8 млн., прибыль после уплаты налогов - 208,6 млн., так называемая нераспределённая прибыль - 897,6 млн. американских долларов.

В. Г. Елизаров.

Wikipedia

Alpha recursion theory

In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals α {\displaystyle \alpha } . An admissible set is closed under Σ 1 ( L α ) {\displaystyle \Sigma _{1}(L_{\alpha })} functions, where L ξ {\displaystyle L_{\xi }} denotes a rank of Godel's constructible hierarchy. α {\displaystyle \alpha } is an admissible ordinal if L α {\displaystyle L_{\alpha }} is a model of Kripke–Platek set theory. In what follows α {\displaystyle \alpha } is considered to be fixed.

The objects of study in α {\displaystyle \alpha } recursion are subsets of α {\displaystyle \alpha } . These sets are said to have some properties:

  • A set A α {\displaystyle A\subseteq \alpha } is said to be α {\displaystyle \alpha } -recursively-enumerable if it is Σ 1 {\displaystyle \Sigma _{1}} definable over L α {\displaystyle L_{\alpha }} , possibly with parameters from L α {\displaystyle L_{\alpha }} in the definition.
  • A is α {\displaystyle \alpha } -recursive if both A and α A {\displaystyle \alpha \setminus A} (its relative complement in α {\displaystyle \alpha } ) are α {\displaystyle \alpha } -recursively-enumerable. It's of note that α {\displaystyle \alpha } -recursive sets are members of L α + 1 {\displaystyle L_{\alpha +1}} by definition of L {\displaystyle L} .
  • Members of L α {\displaystyle L_{\alpha }} are called α {\displaystyle \alpha } -finite and play a similar role to the finite numbers in classical recursion theory.
  • Members of L α + 1 {\displaystyle L_{\alpha +1}} are called α {\displaystyle \alpha } -arithmetic.

There are also some similar definitions for functions mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } :

  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursively-enumerable, or α {\displaystyle \alpha } -partial recursive, iff its graph is Σ 1 {\displaystyle \Sigma _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursive iff its graph is Δ 1 {\displaystyle \Delta _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • Additionally, a function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -arithmetical iff there exists some n ω {\displaystyle n\in \omega } such that the function's graph is Σ n {\displaystyle \Sigma _{n}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .

Additional connections between recursion theory and α recursion theory can be drawn, although explicit definitions may not have yet been written to formalize them:

  • The functions Δ 0 {\displaystyle \Delta _{0}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} play a role similar to those of the primitive recursive functions.

We say R is a reduction procedure if it is α {\displaystyle \alpha } recursively enumerable and every member of R is of the form H , J , K {\displaystyle \langle H,J,K\rangle } where H, J, K are all α-finite.

A is said to be α-recursive in B if there exist R 0 , R 1 {\displaystyle R_{0},R_{1}} reduction procedures such that:

K A H : J : [ H , J , K R 0 H B J α / B ] , {\displaystyle K\subseteq A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{0}\wedge H\subseteq B\wedge J\subseteq \alpha /B],}
K α / A H : J : [ H , J , K R 1 H B J α / B ] . {\displaystyle K\subseteq \alpha /A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{1}\wedge H\subseteq B\wedge J\subseteq \alpha /B].}

If A is recursive in B this is written A α B {\displaystyle \scriptstyle A\leq _{\alpha }B} . By this definition A is recursive in {\displaystyle \scriptstyle \varnothing } (the empty set) if and only if A is recursive. However A being recursive in B is not equivalent to A being Σ 1 ( L α [ B ] ) {\displaystyle \Sigma _{1}(L_{\alpha }[B])} .

We say A is regular if β α : A β L α {\displaystyle \forall \beta \in \alpha :A\cap \beta \in L_{\alpha }} or in other words if every initial portion of A is α-finite.

¿Cómo se dice limited recursion en Ruso? Traducción de &#39limited recursion&#39 al Ruso